FINAL MONITORING REPORT (MY3)

ARABIA BAY WETLAND MITIGATION SITE

Hoke County, North Carolina

DMS Project ID No. 100061 Full Delivery Contract No. 7529 USACE Action ID No. SAW-2018-01151 DWR Project No. 2018-0784 RFP No. 16-007332

> Cape Fear River Basin Cataloging Unit 03030004

Data Collection: January - November 2022 Submission: December 2022

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

Response to Monitoring Year 3 (2022) DMS Comments

Arabia Bay Wetland Mitigation Site (DMS #100061) Cape Fear River Basin 03030004, Hoke County Contract No. 7529

Comments Received (Black Text) & Responses (Blue Text)

Report

- There is a striking correlation between precipitation and wetland gage data showing on this report and based on previous year trends. This is useful information on Carolina Bay and NRW function. Noted and agreed.
- Figure D1. Confirm that the rain data from 2021 is unavailable for June and December. Rain data from June and December 2021 were added to Figure D1. The onsite rain gauge apparently malfunctioned during June 2021, reading 0 inches for the entire month; however, a nearby Weather Underground station (KNCRAEFO25, Raeford, NC) recorded 4.62 inches of rainfall during this time. December 2021 data were added from the onsite gauge.

Electronic deliverables:

- Please submit the groundwater gauge summary table in digital format. The groundwater gauge summary table has been included in the digital submittal.
- 2. No height data has been included in the monitoring report, if height is a performance standard suggest inclusion of this data (or wait until MY5 is ok if waiting for that standard to kick in). The tree height performance standard is not relevant until MY5, and therefore, height data will not be included in the MY1-4 reports unless otherwise requested.

Arabia Bay Year 3, 2022 Monitoring Summary

Wetlands

• None of the 14 groundwater gauges met success criteria during the year 3 (2022) monitoring period (Appendix D). A detailed analysis is provided in Section 2.1.

Year	Soil Temperatures/Monitoring Period Used forDate Bud Burst Documented*Determining Success		10 Percent of Monitoring Period
2020 (Year 1)	March 2, 2020	March 2-November 12 (256 days)	26 days
2021 (Year 2)	March 1, 2021	March 1-November 12 (257 days)	26 days
2022 (Year 3)	March 1, 2022	March 1-November 12 (257 days)	26 days

*Based on data collected from a soil temperature data logger located on the Site.

Summary of Monitoring Period/Hydrology Success Criteria by Year

	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)						ge)
Gauge	Year 1 (2020)	Year 2 (2021)	Year 3 (2022)	Year 4 (2023)	Year 5 (2024)	Year 6 (2025)	Year 7 (2026)
1	Yes - 85 days (33.2%)	Yes - 77 Days (28%)	No – 0 Days (0%)				
2	Yes - 72 days (28.1%)	Yes - 75 Days (27%)	No – 0 Days (0%)				
3	Yes - 72 days (28.1%)	Yes -76 Days (28%)	No – 0 Days (0%)				
4	Yes - 93 days (36.3%)	Yes - 79 Days (29%)	No – 0 Days (0%)				
5	Yes - 95 days (37.1%)	Yes - 82 Days (30%)	No – 0 Days (0%)				
6	Yes - 36 days (14.1%)	Yes - 75 Days (27%)	No – 1 Day (0.5%)				
7	Yes - 77 days (30.1%)	Yes - 75 Days (27%)	No – 1 Day (0.5%)				
8	Yes - 85 days (33.2%)	Yes - 79 Days (29%)	No – 1 Day (0.5%)				
9	Yes - 94 days (36.7%)	Yes - 81 Days (29%)	No – 2 Days (0.8%)				
10	Yes - 69 days (27.0%)	Yes - 74 Days (27%)	No – 0 Days (0%)				
11	Yes - 28 days (10.9%)	Yes - 52 Days (19%)	No – 0 Days (0%)				
12	Yes - 61 days (23.8%)	Yes - 74 Days (27%)	No – 1 Day (0.5%)				
13	Yes - 34 days (13.3%)	Yes - 69 Days (25%)	No – 0 Days (0%)				
14	Yes - 31 days (12.1%)	Yes - 62 Days (22%)	No – 0 Days (0%)				

Vegetation

• Measurements of all 16 plots (14 permanent and 2 temporary transects) resulted in an average of 465 planted stems/acre. Additionally, all individual plots met the success criteria except plots 1 and 12 which were each one stem shy of meeting target goals (Tables 7-9, Appendix C).

General Notes

- No encroachment was identified in Year 3 (2022)
- No evidence of nuisance animal activity (i.e., heavy deer browsing) was observed.

Site Permitting/Monitoring Activity and Reporting History

Activity or Deliverable	Data Collection Complete	Completion or Delivery	
Technical Proposal (RFP No. 16-007332)	February 8, 2018	February 8, 2018	
Institution Date (NCDMS Contract No. 7529)		April 4, 2018	
Mitigation Plan	October 2018	April 30th, 2019	
Construction Plans		November 2018	
Earthwork Completion		August 13th, 2019	
Planting		January 24, 2020	
As-Built Survey	February 2020	March 2020	
As-Built Monitoring Report	February 2020	March 2020	
MY1 Monitoring Report	November 2020	December 2020	
MY2 Monitoring Report	November 2021	December 2021	
MY3 Monitoring Report	November 2022	December 2022	

Site Maintenance Report (2022)

Invasive Species Work	Maintenance work
06/14/2022 China Berry, Sweetgum, Mimosa, Callery Pear 08/11/2022 Sweetgum, Callery Pear, China Berry, Mimosa	None

FINAL MONITORING REPORT (MY3)

ARABIA BAY WETLAND MITIGATION SITE

Hoke County, North Carolina

DMS Project ID No. 100061 Full Delivery Contract No. 7529 USACE Action ID No. SAW-2018-01151 DWR Project No. 2018-0784 RFP No. 16-007332

> Cape Fear River Basin Cataloging Unit 03030004

Data Collection: January - November 2022 Submission: December 2022

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax) Axiom Environmental, Inc.

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

And

Prepared by:

TABLE OF CONTENTS

1.0 PROJECT SUMMARY	.1
1.1 Project Goals & Objectives	
1.2 PROJECT BACKGROUND 1.3 PROJECT COMPONENTS AND STRUCTURE	
1.4 Success Criteria	
2.0 METHODS	.3
2.1 Monitoring	4
3.0 REFERENCES	.7

APPENDICES

Appendix A. Background Tables Figure 1. Project Location Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

Appendix B. Visual Assessment Data

Figure 2. Current Conditions Plan View Table 5. Vegetation Condition Assessment Vegetation Plot Photographs

Appendix C. Vegetation Data

Table 6. Planted Bare Root Woody Vegetation Table 7. Total Stems by Plot and Species Table 8. Temporary Vegetation Plot Data Table 9. Planted Vegetation Totals

Appendix D. Hydrology Data

Table 10. Groundwater Hydrology Data Groundwater Gauge Graphs Soil Temperature Graph Figure D1. 30-70th Percentile Graph for Rainfall Antecedent Precipitation Tool Outputs

1.0 PROJECT SUMMARY

Restoration Systems, LLC (RS) has established the North Carolina Division of Mitigation Services (NCDMS) Arabia Bay Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals were based on the *Cape Fear River Basin Restoration Priorities* (CFRBRP) report (NCEEP 2009). Goals are addressed by project objectives as follows:

- CFRBRP Goal Reduce and control sediment inputs Site-specific objective – Cessation of row crop production and conversion of a ditched Carolina Bay to a depressional wetland, removal of agricultural sediment outputs from the Site, and control of sediments within the Site.
- CFRBRP Goal Reduce and manage nutrient inputs Site-specific objective – Cessation of row crop production may result in a direct reduction of 160 pounds of nitrogen and 280 pounds of phosphorus per year (based on the nutrient model) from the elimination of agricultural nutrient inputs/fertilizer application at the Site.

Site-specific mitigation goals and objectives have been developed through the North Carolina Wetland Assessment Method (NC WAM) analyses of preconstruction and reference wetland systems (NC WFAT 2010) as outlined in the following table.

1.2 Project Background

The Site is situated in a Carolina Bay that was historically cleared, drained, and farmed. In the NC Geological Survey 1956 aerial photograph for Hoke County, the Site was in agricultural production, indicating the area was cleared before 1956. The bay is an isolated depression surrounded by sand rims along the northwest and southeast margins. Land use adjacent to the bay includes rural residential properties, timber tracts, and additional row crops. Before construction, the Site land use was characterized entirely by agricultural row crops. Herbaceous vegetation and a few shrubby species grew along Site ditches, which were regularly maintained by bush hogging and herbicide application.

Targeted Functions Goals		Objectives			
(1) HYDROLOGY					
(2) Surface Storage & Retention	Minimize downstream	 Filled agriculture ditches to restore jurisdictional hydrology Planted native woody vegetation Ceased row crop production within the 			
(2) Sub-surface Storage & Retention	flooding to the maximum extent possible.	 easement Plowed soils (6-8 inches) to reduce surface compaction and increase surface roughness Protected the Site with a perpetual conservation easement 			

Wetland Targeted Functions, Goals, and Objectives

(1) WATER QUALITY		
(2) Pollution Change	 Remove direct nutrient, sediment, and pollutant inputs from the Site. 	 Removed agricultural land uses and agricultural inputs from the Site Filled the ditch network to restore ground and surface hydrology within the Site Planted woody vegetation Restored jurisdictional wetlands
(1) HABITAT		
(2) Physical Structure	Improve wildlife	Planted woody vegetation to provide organic matter and shade
(2) Landscape Patch Structure	habitat within and adjacent to the	 Filled ditches to provide groundwater hydrology and plant woody native vegetation Protected the Site with a perpetual
(2) Vegetation Composition	Site.	 Restored jurisdictional wetlands

Wetland Targeted Functions, Goals, and Objectives (continued)

The 1956 NC Geological Survey aerial photograph and 1974 aerial photograph included in the Hoke and Cumberland Counties Soil Survey show a historic ditch that was not present before Site restoration (USDA 1984). The ditch was located in the middle of the field and ran from the southeast to the northwest, connecting to the westernmost primary ditch. The historical ditch appeared to be a secondary ditch that was not necessary for agricultural production and was therefore filled in during the 1980s. A field investigation was performed using hand tools to locate the historic ditch location and determine if the subsurface clay layer was intact. Based on the field investigation, it appears the clay layer within the footprint of the historic ditch is intact.

A Detailed Restoration Plan was prepared for the Site that outlined backfilling agricultural ditches and planting native forest vegetation. In addition, an outlet structure was designed as an emergency spillway if the bay filled during significant storm events. The detailed plan was approved by the NCDMS and Interagency Review Team (IRT) and implemented during the summer of 2019.

1.3 Project Components and Structure

Proposed Site restoration activities generated 16.0 Non-riparian Wetland Mitigation Units (WMUs) resulting from 16.1 acres of non-riparian wetland restoration.

Additional activities that occurred at the Site included the following:

- Moving the access road off the Carolina bay bed and onto the adjacent sand rim. The road was built according to the construction plans at an average elevation of 223 feet,
- Installation of an overflow drop structure to release water from the Carolina bay during significant storm events (at a water depth of approximately 2.5 feet in the Carolina bay bottom),
- Excavation of shallow, elliptical depressions to form hummocks and pools for habitat variation across the Site,
- Plant 16.1 acres of the Site with 10,300 stems (planted species and densities by zone are included in Table 6 [Appendix C]).
- A permanent seed mix was applied across the Site.

Site design was completed in November 2018. Construction started on August 5, 2019, and ended with a final walkthrough on August 22, 2019. The Site was planted on January 24, 2020, and visited by IRT members in May 2020. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria were established per the October 24, 2016, NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring and success criteria relate to project goals and objectives. Several goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement from a mitigation perspective. Other goals and objectives will be considered successful upon achieving success criteria. The following table summarizes Site success criteria.

Success Criteria

Wetland Hydrology

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season, during average climatic condition based on the Wilmington District Stream and Wetland Compensatory Mitigation Update (USACE 2016), Table 1, for a Typic Paleaquult (Rains).

Vegetation

- Within planted portions of the Site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7 in each plot.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the Site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.
- Any single species can only account for 50% of the required stems within any vegetation plot.
 - Ephemeral pool "habitat areas" are a normal component of Carolina bays. Areas of freshwater marsh are expected to be comprised of herbaceous emergent vegetation and not forested woody vegetation. Ephemeral pool "habitat areas" are expected to encompass approximately 20% of the bay area and should not be held to the above vegetative success criteria.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016, NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Monitoring Schedule

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Wetlands	х	Х	х	х	Х	х	х
Vegetation	х	х	х		х		х
Visual Assessment	х	Х	х	х	Х	х	х
Report Submittal	х	Х	х	х	Х	х	х

2.1 Monitoring

The monitoring parameters are summarized in the following table.

Monitoring Summary

	Wetland Parameters					
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported		
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7 throughout the year with the growing season defined as March 2-November 12	14 gauges spread throughout restored wetlands	Soil temperature* at the beginning of each monitoring period to verify the start of the growing season, groundwater and rain data for each monitoring period		
	Visual Assessment	As-built, Years 1, 2, 3, 5, and 7	Terracell outlet structure and ditch plugs	Visually inspect features to ensure they are performing as designed and retaining hydrological inputs		
		Vegetation Paramet	ers			
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported		
Vegetation establishment and vigorPermanent vegetation plots 0.0247 acre (100 square meters) in size; CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008)As-but 		As-built, Years 1, 2, 3, 5, and 7	14 plots spread across the Site	Species, height, planted vs. volunteer, stems/acre		
	Annual random vegetation plots, 0.0247 acre (100 square meters) in size	As needed	As needed	Species		

*Soil Temperature will be measured with a continuous recording soil probe. Temperatures will be measured from February to the end of April in each monitoring year.

<u>Wetland Summary</u> Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented*	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2020 (Year 1)	March 2, 2020	March 2-November 12 (256 days)	26 days
2021 (Year 2)	March 1, 2021	March 1-November 12 (257 days)	26 days
2022 (Year 3)	March 1, 2022	March 1-November 12 (257 days)	26 days

*Based on data collected from a soil temperature data logger located on the Site.

In response to drier than normal rainfall for several months in 2021 and 2022 none of the 14 groundwater gauges met success criteria during the Year 3 (2022) monitoring period (Appendix D). In general, Hoke County and the surrounding ecoregion have been drier than normal for most of 2021 and 2022. This can be observed in data available from NOAA – NWS Advanced Hydrologic Prediction Service, US Drought Monitor, and the USACE Antecedent Precipitation Tool. Additionally, this is apparent when comparing onsite rainfall data to long-term normal rainfall. Specifically, onsite monthly rainfall data from January 2021 through November 2022 shows 13 out of 23 months with drier than normal rainfall. Also, onsite rainfall data shows the total rainfall for 2021 (28.75 inches) and 2022 (26.47 inches) are both well below the average total rainfall (46.75 inches) for the area when looking at long-term (1971-2000) data from the AgACIS weather station Red Springs 1 SE, NC. The long-term average total rainfall from this weather station was used when calculating the water budget for the Site.

Despite alternating months of drier than normal to normal rainfall from January – September during 2022, the Site remained visibly dry throughout the year. Following the precipitation trends described above the Year 3 (2022) growing season, it is apparent that rainfall remained below average for most of this period. The Site is a precipitation driven wetland and is therefore dependent on retaining all direct precipitation and benefits from secondary inputs including overland flow and subsurface groundwater. Without consistent, normal levels of precipitation through the wet season to allow the perched water table to recharge, the wetland system will not display typical wetland hydrology characteristics during the growing season. The onsite rainfall data shows drier than normal rainfall from April 2021 through February 2022, apart from January 2022 having normal rainfall. This explains the failure of the Site to meet wetland hydrology success criteria for Year 3 (2022). Assuming normal rainfall events rebound during the winter and spring of 2023, RS expects wetland success criteria will be met during Year 4 (2023). Groundwater gauge graphs, 30-70th percentile rainfall data, soil temperature graph, and relevant antecedent precipitation data are in Appendix D.

Vegetation Summary

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were surveyed within the Site as per guidelines established in CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008). Year 3 (2022) measurements occurred on July 6, 2022 and included two (2) additional random plots (50-meter by 2-meter). Measurements of all 16 plots resulted in an average of 465 planted stems/acre.

Additionally, all individual plots met the success criteria except plots 1 and 12 which were each one stem shy of meeting target goals (Tables 7-9, Appendix C). Plots 1 and 12 had no mortality between Year 2 and Year 3 monitoring.

3.0 REFERENCES

- Lee, M.T., R.K. Peet, SD. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-</u> <u>c72dfcb55012&groupId=60329</u>
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). NC Wetland Assessment Method (NC WAM) User Manual. Version 4.1.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1984. Soil Survey of Cumberland and Hoke Counties, North Carolina. United States Department of Agriculture, Soil Conservation Service.
- United States Department of Agriculture (USDA). 2017. Web Soil Survey (online). Available: <u>https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</u> [May 8, 2018]. United States Department of Agriculture.

Appendix A Background Tables and Map

Figure 1. Project Location Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

Table 1. Project Components and Mitigation CreditsArabia Bay Restoration Site

Reach ID	Wetland Type	Existing Acreage	Restoration Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits
Wetland Restoration	Non-riparian		16.000	Restoration	16.000	1:1	16.000

Length & Area Summations by Mitigation Category				
Restoration Level Non-riparian Wetland (acreage)				
Restoration	16.000			

Overall Assets Summary											
Asset Category	Overall Credits										
Non-riparian Wetland	16.000										

Table 2. Project Activity and Reporting HistoryArabia Bay Restoration Site

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Technical Proposal (RFP No. 16-007332)	February 8, 2018	February 8, 2018
Institution Date (NCDMS Contract No. 7529)		April 4, 2018
Mitigation Plan	October 2018	April 30th, 2019
Construction Plans		November 2018
Earthwork Completion		August 13th, 2019
Planting		January 24, 2020
As-Built Survey	February 2020	March 2020
As-Built Monitoring Report	February 2020	March 2020
MY1 Monitoring Report	November 2020	December 2020
MY2 Monitoring Report	November 2021	December 2021
MY3 Monitoring Report	November 2022	December 2022

Table 3. Project Contacts TableArabia Bay Restoration Site

Full Delivery Provider Restoration Systems	Construction Contractor Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Restoration Systems
218 Snow Avenue	1101 Haynes Street, Suite 211
Raleigh, NC 27603	Raleigh, North Carolina 27604
Grant Lewis 919-215-1693	Worth Creech 919-755-9490
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute TableArabia Bay Restoration Site

	Project li	nformation										
Project Name		Aral	bia Bay Restoration Site									
Project County		Hoke	e County, North Carolina									
Project Area (acres)		16.1										
Project Coordinates (latitude & latitude)		34.9570ºN, 79.1379ºW										
Planted Area (acres)		16.1										
Proje	ct Watershed	hed Summary Information										
Physiographic Province		Piedmont										
Project River Basin			Cape Fear									
USGS HUC for Project (14-digit)			03030004150011									
NCDWR Sub-basin for Project			03-06-15									
Project Drainage Area (acres)			NA									
Percentage of Project Drainage Area Impervious	that is		<5%									
CGIA Land Use Classification			Cultivated									
,	Wetland Summ	nary Information										
Parameters		Wetlands										
Wetland acreage		16.1 acres drained										
Wetland Type		Non-riparian										
Mapped Soil Series		McColl										
Drainage Class		Poorly drained										
Hydric Soil Status		Hydric										
Source of Hydrology		Prec	cipitation, groundwater									
Hydrologic Impairment		I	Ditched and drained									
Native Vegetation Community		Bay Fore	st/Small Depression Pocosin									
% Composition of Exotic Invasive Vegetati	on		0%									
Restoration Method		Н	ydrologic, vegetative									
Enhancement Method			NA									
	Regulatory (Considerations										
Regulation	Applicable?	Resolved?	Supporting Documentation*									
Waters of the United States-Section 401	Yes	Yes	Approved JD (App D)									
Waters of the United States-Section 404	Yes	Yes	Approved JD (App D)									
Endangered Species Act	Yes	Yes	CE Document (App E)									
Historic Preservation Act	Yes	Yes	CE Document (App E)									
Coastal Zone Management Act	No		CE Document (App E)									
FEMA Floodplain Compliance	No		CE Document (App E)									
Essential Fisheries Habitat	No		CE Document (App E)									

*Included in the Detailed Mitigation Plan

Appendix B Visual Assessment Data

Figure 2. Current Conditions Plan View Table 5. Vegetation Condition Assessment Vegetation Plot Photographs Photo Log

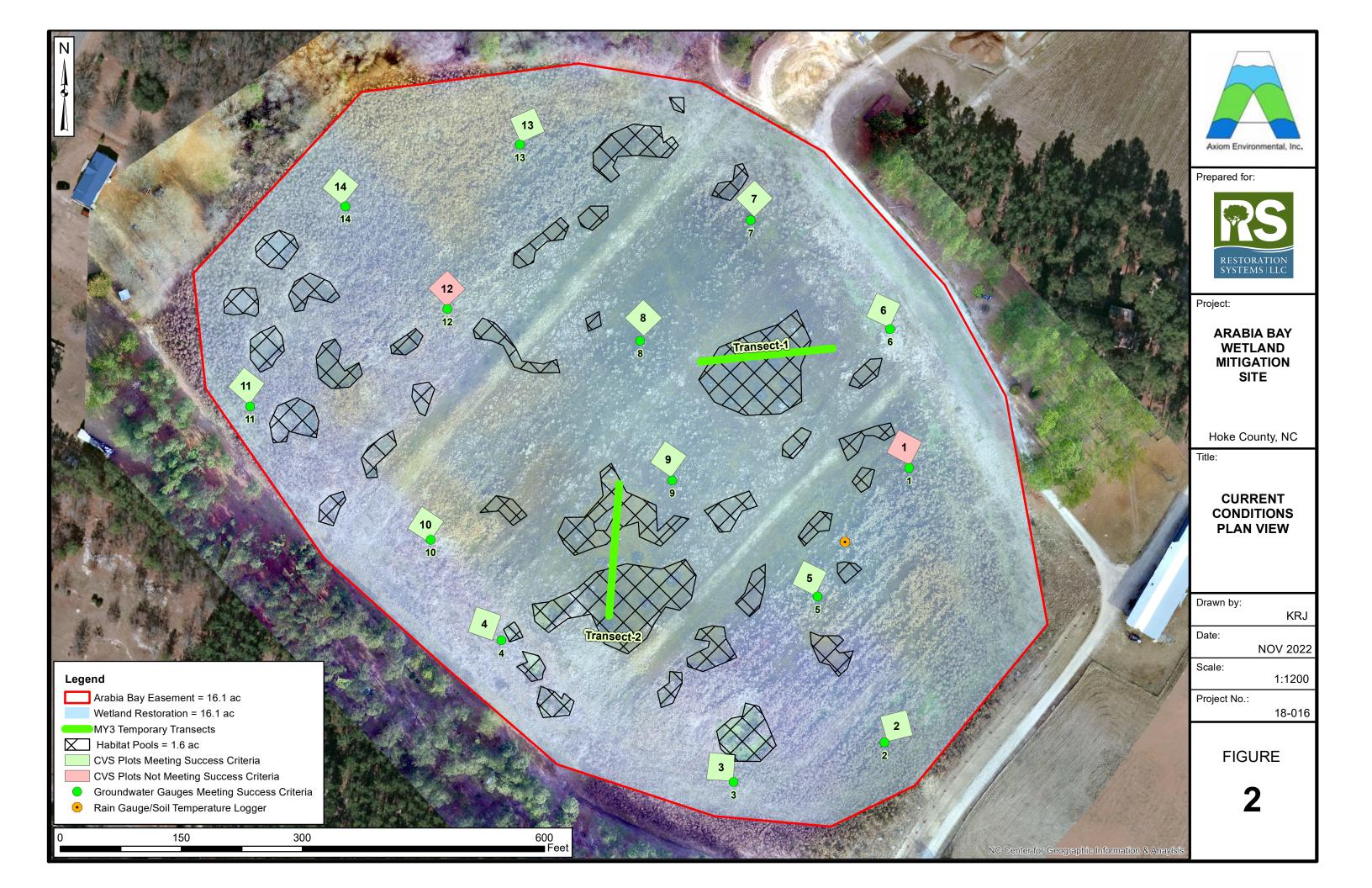


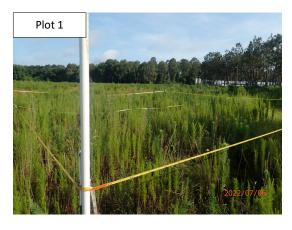
Table 5

Vegetation Condition Assessment

Arabia Bay

Planted Acreage ¹	16.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
			Cumulative Total	0	0.00	0.0%

Easement Acreage ²	16.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

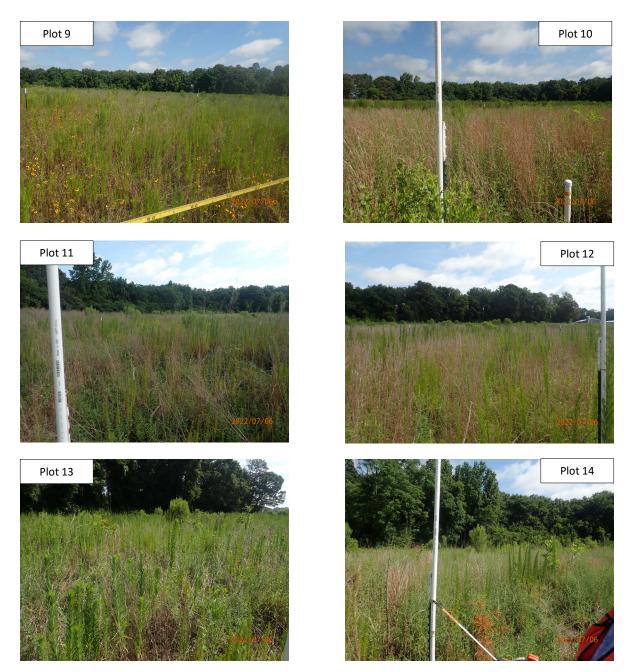

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

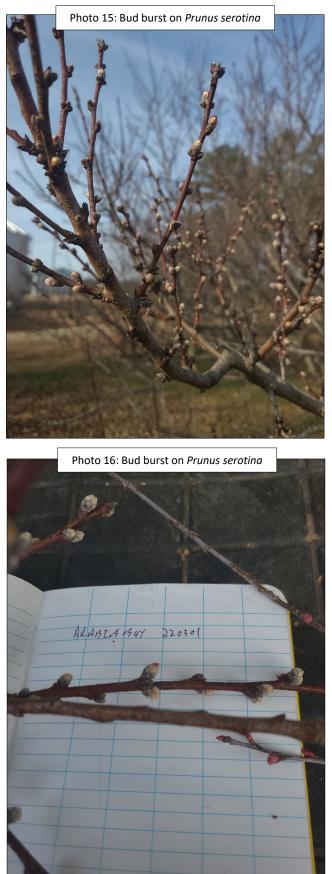
4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the protectiality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points was found to be helpful for symbolzing invasives polygons, particularly for situations where the conditor for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be

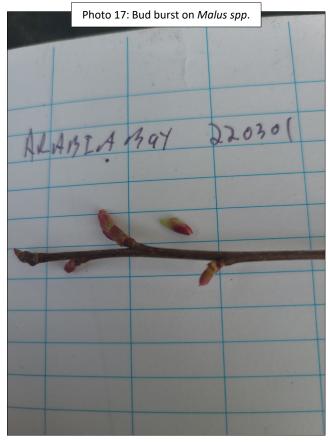
Arabia Bay Site MY3 (2022) Vegetation Monitoring Photographs (taken July 2022)

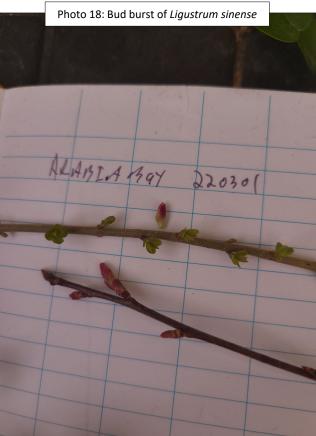


Arabia Bay Site MY3 (2022) Vegetation Monitoring Photographs (taken July 2022)

<image>







Appendix C Vegetation Data

Table 6. Planted Bare Root Woody Vegetation Table 7. Total Stems by Plot and Species Table 8. Temporary Vegetation Plot Data Table 9. Planted Vegetation Totals

Table 6. Planted Bare Root Woody VegetationArabia Bay Restoration Site

Nonri	verine Wet Hardwood Forest	
Species	Quantity	Percentage
Cephalanthus occidentalis	100	1%
Fraxinus pennsylvanica	600	6%
Magnolia virginiana	1,000	10%
Nyssa sylvatica v sylvatica	1,000	10%
Quercus bicolor	600	6%
Quercus laurifolia	1,000	10%
Quercus michauxii	600	6%
Quercus nigra	1,000	10%
Quercus pagoda	600	6%
Taxodium distichum	800	8%
	7,300	71%

Сур	ress Savanna (Habitat Pools)	
Species	Quantity	Percentage
Nyssa sylvatica v biflora	1,000	10%
Taxodium ascendens	2,000	19%
	3,000	29%

Totals =

10,300

Table 7. Total Stems by Plot and Species Project Code 18016. Project Name: Arabia Bay

														Curr	ent Plo	ot Data	(MY3 2	2022)											
			180	16-01-	0001	180	16-01-0	0002	180	16-01-0	003	1801	L6-01-0	004	180	16-01-0	0005	180	016-01-0	0006	180	16-01-	0007	180	16-01-0	0008	180	16-01-0	009
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Celtis occidentalis	common hackberry	Tree																											
Cephalanthus occidentalis	common buttonbush	Shrub																						4	4	4	,		
Fraxinus pennsylvanica	green ash	Tree	1	1	. 1	. 2	2	2	6	6	6	5						4	4 4	4							2	2	;
Magnolia virginiana	sweetbay	Tree	1	1	. 1	. 2	2	2	1	1	1	1	1	1	1	1	1				1	. 1	1				1	1	
Nyssa	tupelo	Tree										2	2	2				1	L 1	1				3	3	3	,		
Nyssa sylvatica	blackgum	Tree							1	1	1	2	2	2				1	L 1	1				1	1	1			
Quercus	oak	Tree																											
Quercus bicolor	swamp white oak	Tree	1	1	. 1	. 2	2	2																1	1	1			
Quercus lyrata	overcup oak	Tree				4	4	4	1	1	1	. 1	1	1	2	2	2	1	L 1	1	1	. 1	. 1				5	5	į
Quercus michauxii	swamp chestnut oak	Tree				2	2	2	1	1	1										4	. 4	. 4	. 3	3	3	j –		
Quercus nigra	water oak	Tree	2	2	2 2				3	3	3	2	2	2				3	3 3	3	4	. 4	. 4	ŀ			2	2	;
Quercus pagoda	cherrybark oak	Tree	1	1	. 1	. 5	5	5	1	1	1	. 1	1	1	1	1	1							1	1	1			
Taxodium distichum	bald cypress	Tree	1	1	. 1				6	6	6	4	4	4	4	4	4				1	. 1	1						
Unknown		Shrub or Tree																											
		Stem count	7	7	' 7	17	17	17	20	20	20	13	13	13	8	8	8	10	0 10	10	11	. 11	. 11	. 13	13	13	8 10	10	1(
		size (ares)		1			1			1			1			1	-		1			1			1		1	1	
		size (ACRES)		0.02			0.02			0.02			0.02		0.02			0.02			0.02			0.02			0.02		
		Species count	6	6	6 6	6 6	6	6	8	8	8	7	7	7	4	4	4	5	5 5	5	5	5	5	6	6	6	, 4	4	l
	9	Stems per ACRE		283.3	283.3	688	688	688	809.4	809.4	809.4	526.1	526.1	526.1	323.7	323.7	323.7	404.7	404.7	404.7	445.2	445.2	445.2	526.1	526.1	526.1	404.7	404.7	404.

Color for Density

PnoLS = Planted excluding livestakes P-all = Planting including livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10%

T = All planted and natural recruits including livestakes

Fails to meet requirements,
Fails to meet requirements by more than 10%T in

T includes natural recruits

Table 7. Total Stems by Plot and Species (continued)Project Code 18016. Project Name: Arabia Bay

				Current Plot Data (MY3 2022)																		Annual	Means	;							
			1803	16-01-0	010	18016-01-0011		180	16-01-0	0012	180	16-01-	0013	180	16-01-0	0014	N	1Y3 (202	2)	М	Y2 (202	21)	М	Y1 (202	20)	יM	YO (202	.0)			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Г	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т		
Celtis occidentalis	common hackberry	Tree	1	1	1													1	. 1	1	1	1	1				1	1	1		
Cephalanthus occidentalis	common buttonbush	Shrub																4	4	4	4	4	4	4	4	4	2	2	2		
Fraxinus pennsylvanica	green ash	Tree	2	2	2										2	2	2	19) 19	19	17	17	17	17	17	17	17	17	17		
Magnolia virginiana	sweetbay	Tree							1	1	1	3	3	3	2	2	2	14	14	14	14	14	14	16	16	16	20	20	20		
Nyssa	tupelo	Tree	1	1	1	4	4	4	1	1	1				2	2	2	14	14	14	16	16	16	19	19	19	26	26	26		
Nyssa sylvatica	blackgum	Tree				2	2	2	1	1	1							8	8 8	8	8	8	8	6	6	6	6	6	F		
Quercus	oak	Tree				1	1	1										1	. 1	1	2	2	2	2	2	2	4	4	2		
Quercus bicolor	swamp white oak	Tree	4	4	4										2	2	2	10	0 10	10	10	10	10	9	9	9	8	8	5		
Quercus lyrata	overcup oak	Tree							2	2	2				1	. 1	1	18	8 18	18	17	17	17	18	18	18	22	22	22		
Quercus michauxii	swamp chestnut oak	Tree													1	. 1	1	11	. 11	11	9	9	9	9	9	9	9	9	ç		
Quercus nigra	water oak	Tree							2	2	2	1	. 1	1	1	. 1	1	20	20	20	18	18	18	19	19	19	20	20	20		
Quercus pagoda	cherrybark oak	Tree	2	2	2	2	2	2										14	14	14	16	16	16	19	19	19	29	29	29		
Taxodium distichum	bald cypress	Tree	2	2	2	2	2	2				4	. 4	4				24	24	24	24	24	24	23	23	23	26	26	26		
Unknown		Shrub or Tree																									2	2	2		
		Stem count	12	12	12	11	11	11	7	7	7	8	8	8	11	. 11	11	158	158	158	156	156	156	161	161	161	192	192	192		
		size (ares)		1			1			1			1			1			14			14			14		14				
	size (ACRES) 0.02 0.02				0.02		0.02			0.02			0.35			0.35		0.35													
		Species count	6	6	6	5	5	5	5	5	5	3	3	3	7	7	7	13	8 13	13	13	13	13	12	12	12	14	14	14		
		Stems per ACRE	485.6	485.6	485.6	445.2	445.2	445.2	283.3	283.3	283.3	323.7	323.7	323.7	445.2	445.2	445.2	456.7	456.7	456.7	450.9	450.9	450.9	465.4	465.4	465.4	555	555	555		

Color for Density Exceeds requirements by 10% PnoLS = Planted excluding livestakes P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

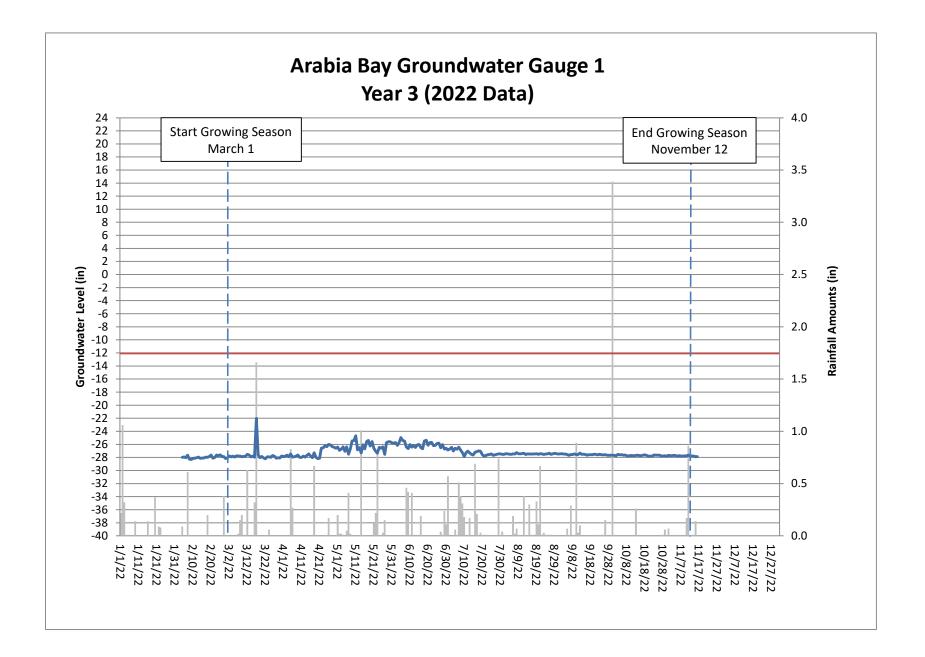
Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

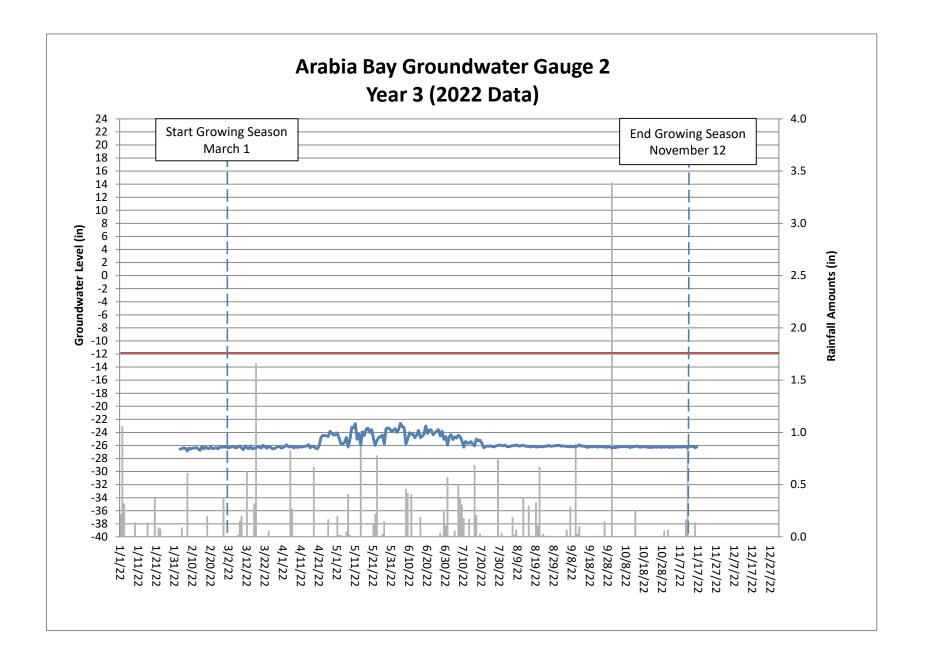
T includes natural recruits

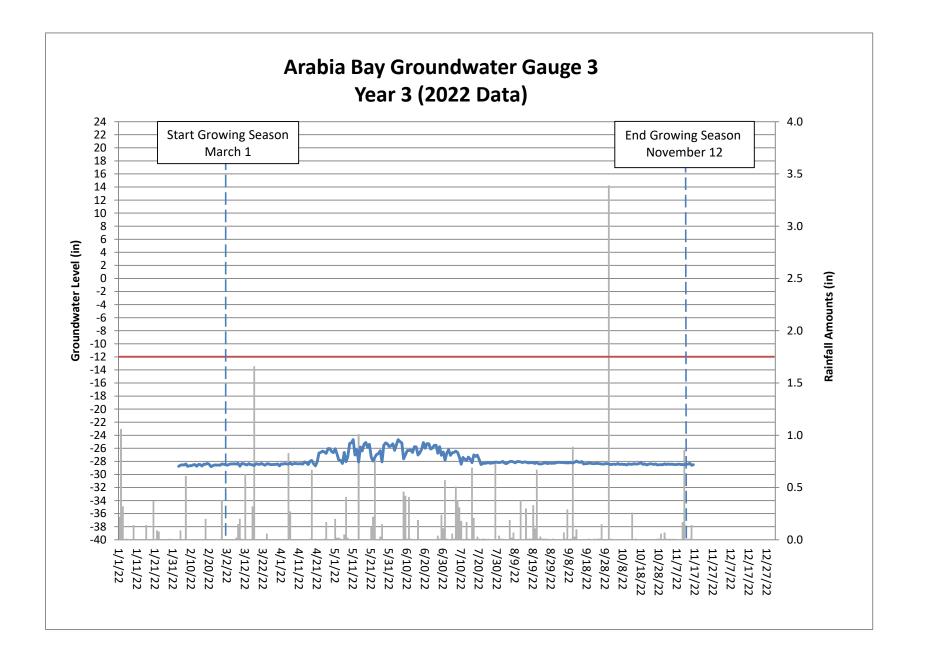
Table 8. Temporary Vegetation Plot DataArabia Bay Restoration Site

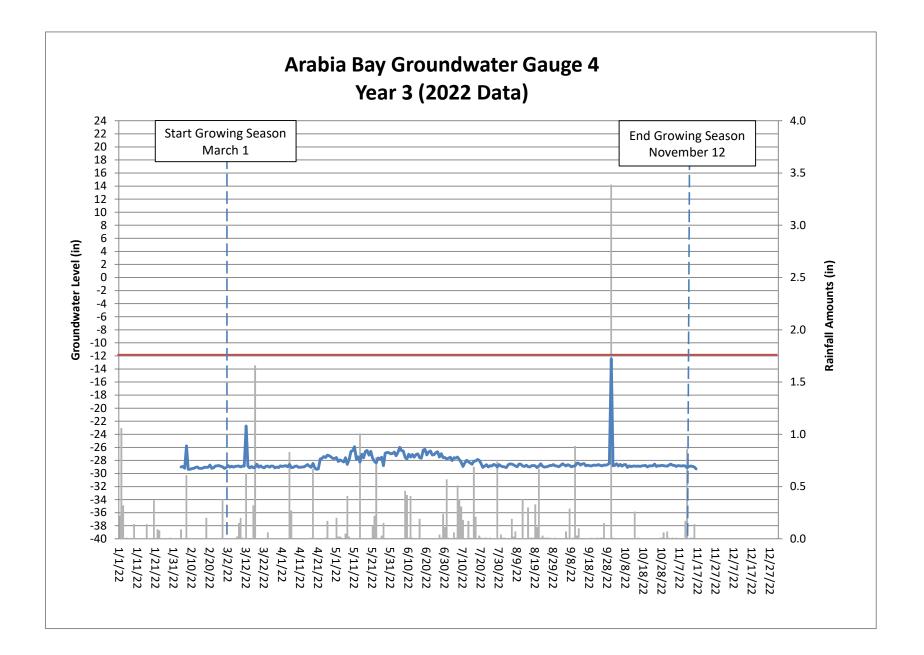
Species	50m x 2m Tem	porary Plot
Species	T-1	T-2
Magnolia virginiana		1
Taxodium ascendens	3	2
Taxodium distichum	3	4
Quercus michauxii	3	2
Quercus nigra	2	
Quercus pagoda	3	3
Total Stems	14	12
Total Stems/Acre	567	486

Table 9. Planted Vegetation TotalsArabia Bay Restoration Site

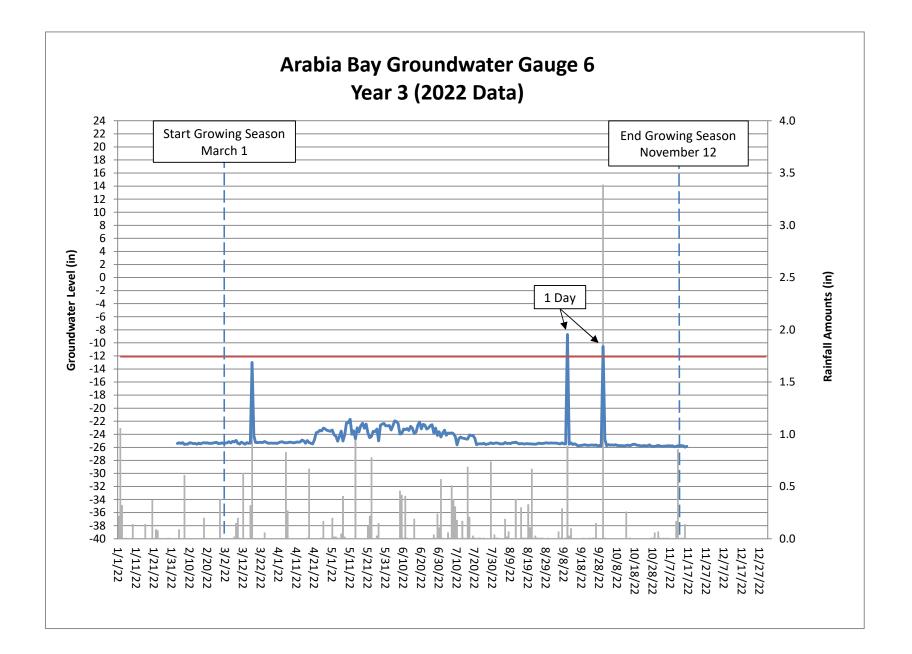

Plot #	Planted Stems/Acre	Success Criteria Met?
1	283	No
2	688	Yes
3	809	Yes
4	526	Yes
5	324	Yes
6	405	Yes
7	445	Yes
8	526	Yes
9	405	Yes
10	486	Yes
11	445	Yes
12	283	No
13	324	Yes
14	445	Yes
T-1	567	Yes
T-2	486	Yes
Average Planted Stems/Acre	465	Yes

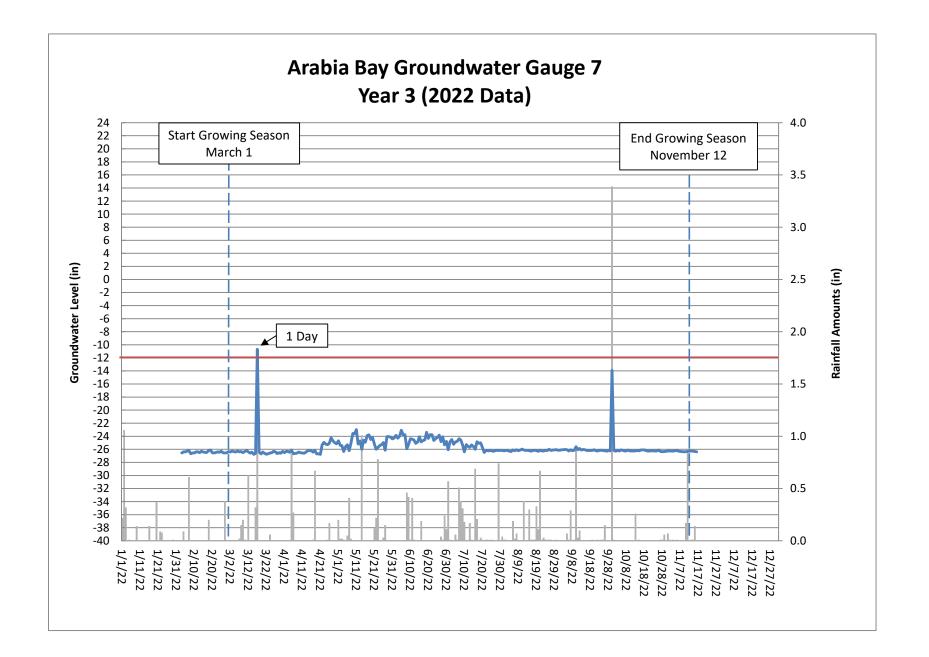

Appendix D Hydrology Data

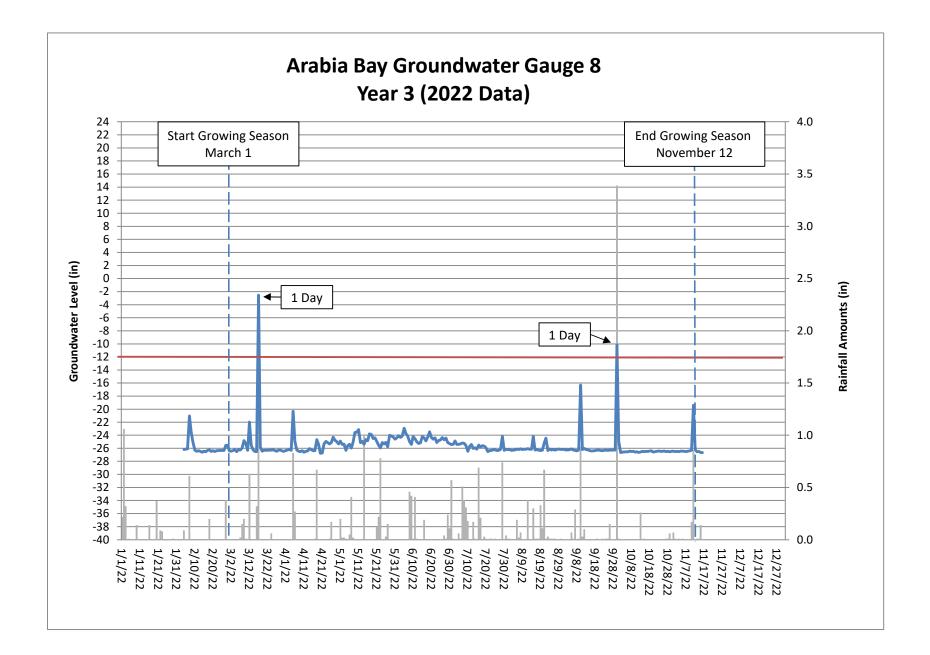

Table 10. Groundwater Hydrology Data Groundwater Gauge Graphs Soil Temperature Graph Figure D1. 30-70th Percentile Graph for Rainfall Antecedent Precipitation Tool Outputs

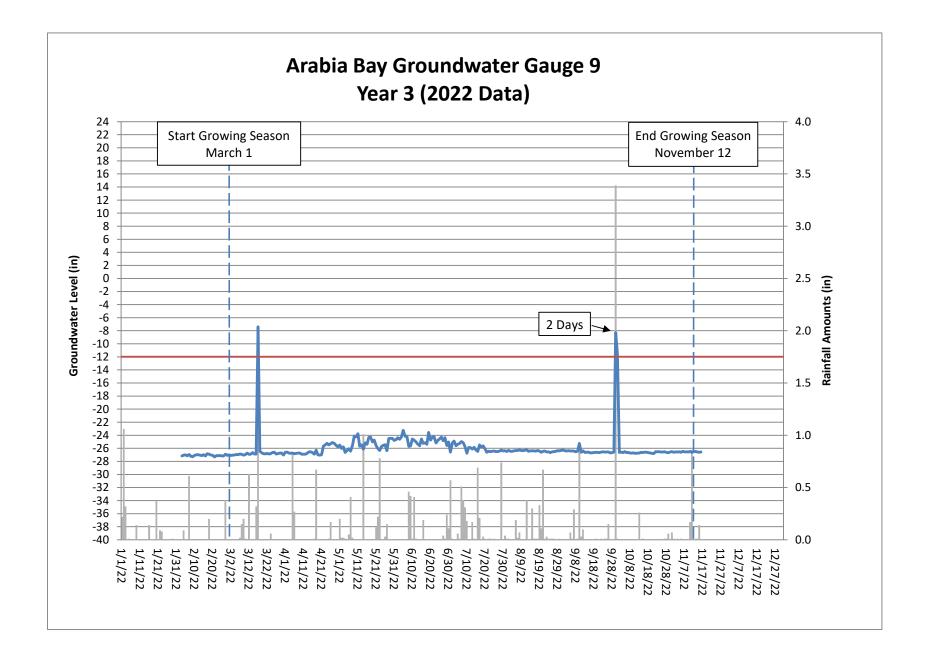

Table 10.	. Groundwater Hydrology Data
-----------	------------------------------

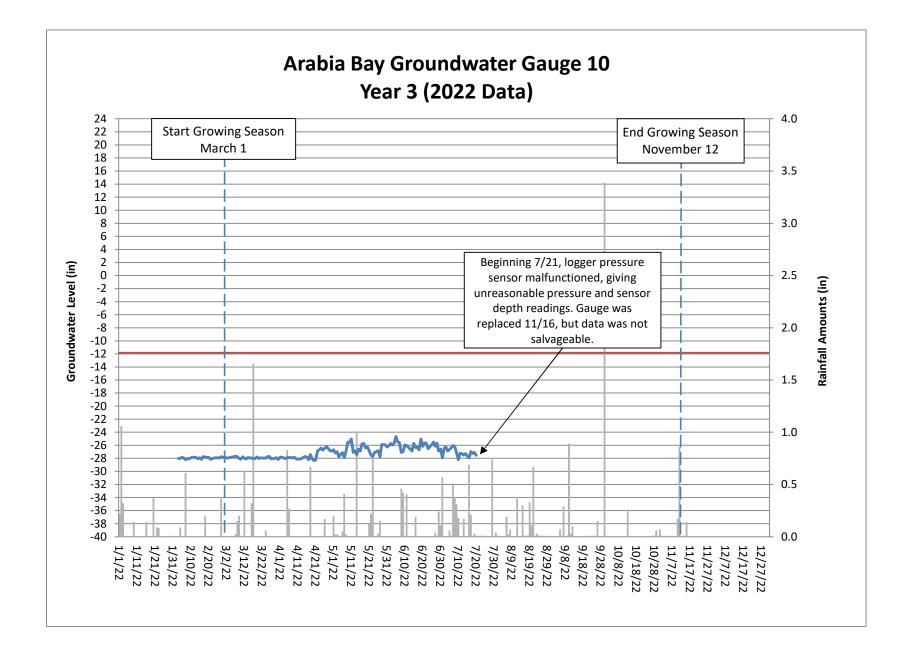
	Su	ccess Criteria Ach	nieved/Max Cor	secutive Days D	ouring Growing S	Season (Percenta	ge)
Gauge	Year 1 (2020)	Year 2 (2021)	Year 3 (2022)*	Year 4 (2023)	Year 5 (2024)	Year 6 (2025)	Year 7 (2026)
1	Yes - 85 days (33.2%)	Yes - 77 Days (28%)	No – 0 Days (0%)				
2	Yes - 72 days (28.1%)	Yes - 75 Days (27%)	No – 0 Days (0%)				
3	Yes - 72 days (28.1%)	Yes -76 Days (28%)	No – 0 Days (0%)				
4	Yes - 93 days (36.3%)	Yes - 79 Days (29%)	No – 0 Days (0%)				
5	Yes - 95 days (37.1%)	Yes - 82 Days (30%)	No – 0 Days (0%)				
6	Yes - 36 days (14.1%)	Yes - 75 Days (27%)	No – 1 Day (0.5%)				
7	Yes - 77 days (30.1%)	Yes - 75 Days (27%)	No – 1 Day (0.5%)				
8	Yes - 85 days (33.2%)	Yes - 79 Days (29%)	No – 1 Day (0.5%)				
9	Yes - 94 days (36.7%)	Yes - 81 Days (29%)	No – 2 Days (0.8%)				
10	Yes - 69 days (27.0%)	Yes - 74 Days (27%)	No – 0 Days (0%)				
11	Yes - 28 days (10.9%)	Yes - 52 Days (19%)	No – 0 Days (0%)				
12	Yes - 61 days (23.8%)	Yes - 74 Days (27%)	No – 1 Day (0.5%)				
13	Yes - 34 days (13.3%)	Yes - 69 Days (25%)	No – 0 Days (0%)				
14	Yes - 31 days (12.1%)	Yes - 62 Days (22%)	No – 0 Days (0%)				

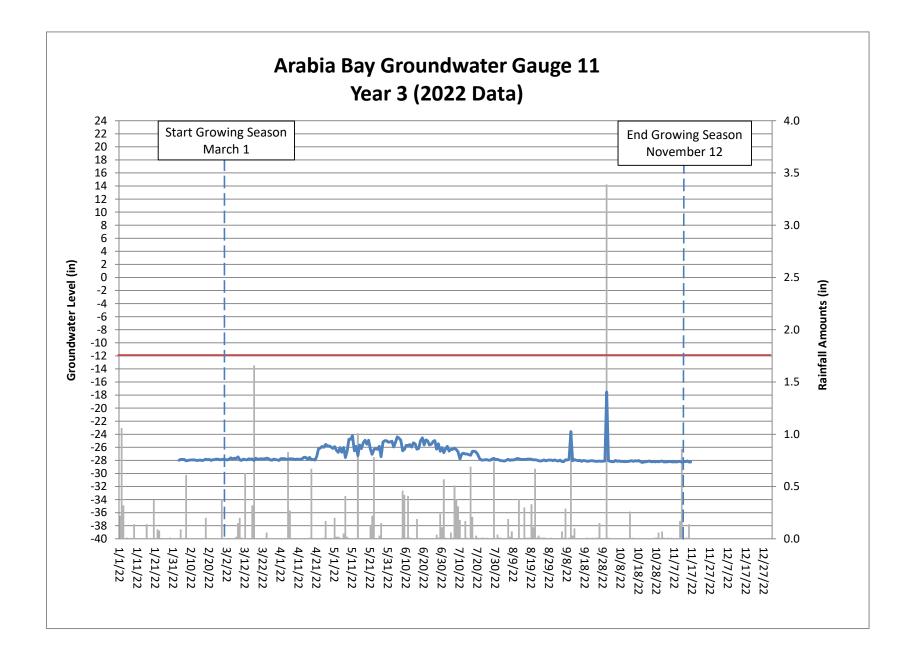


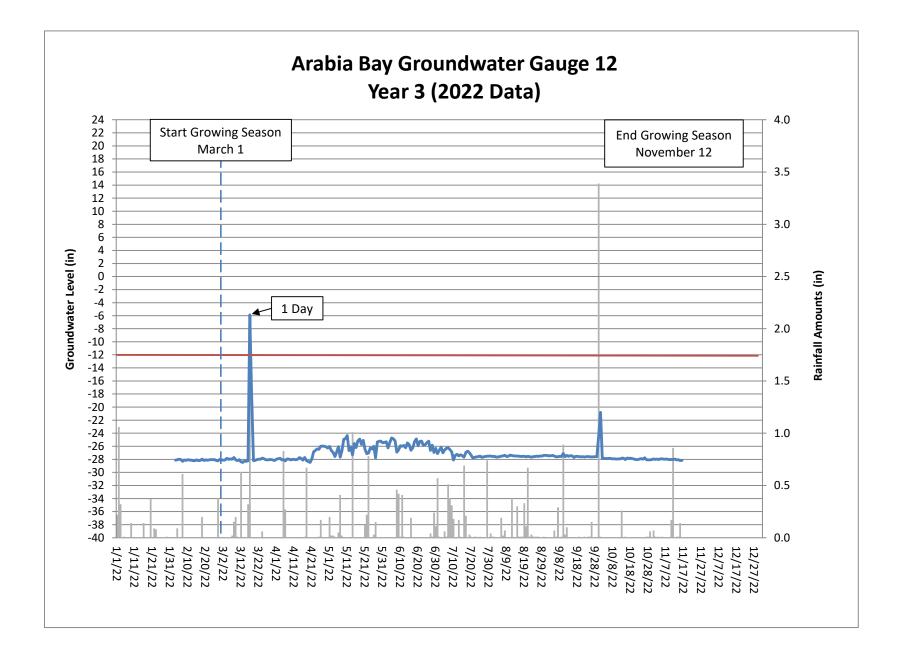


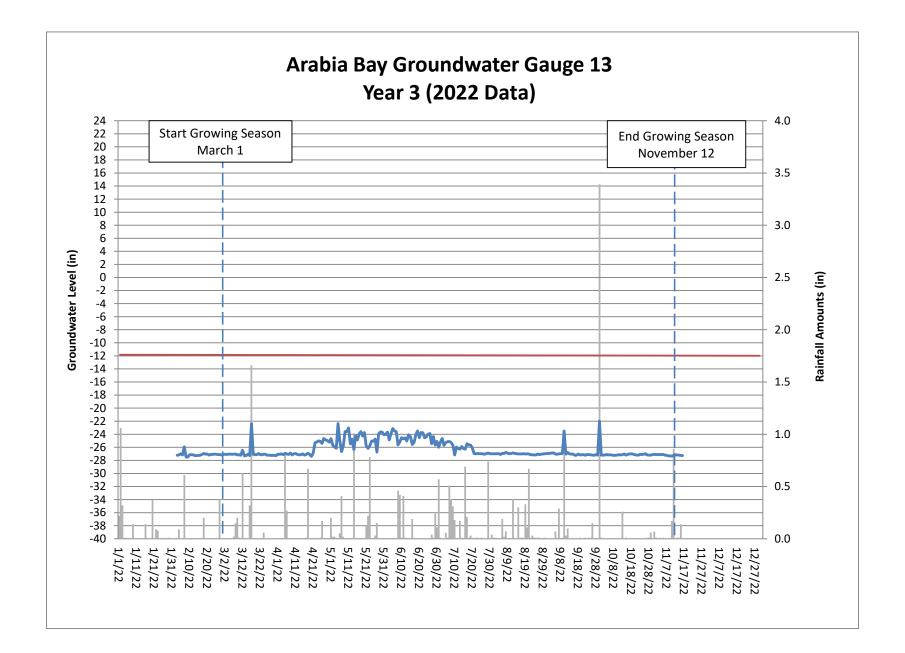


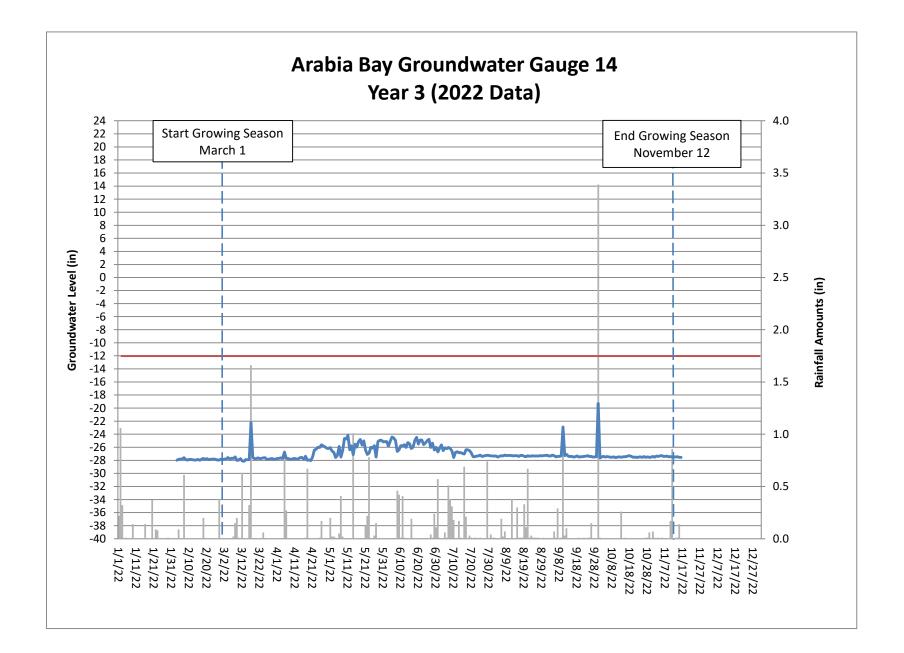


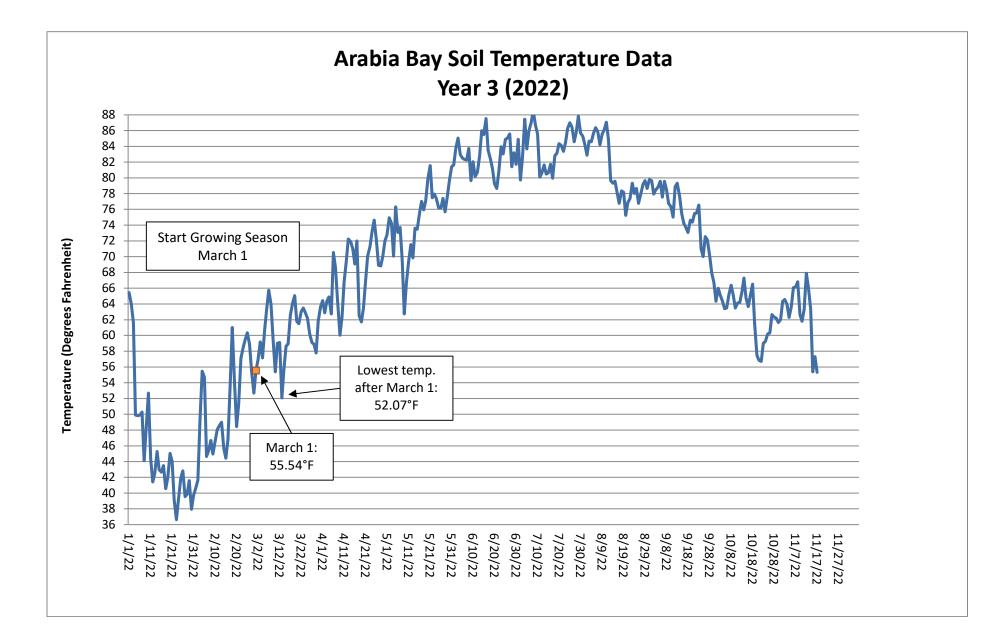


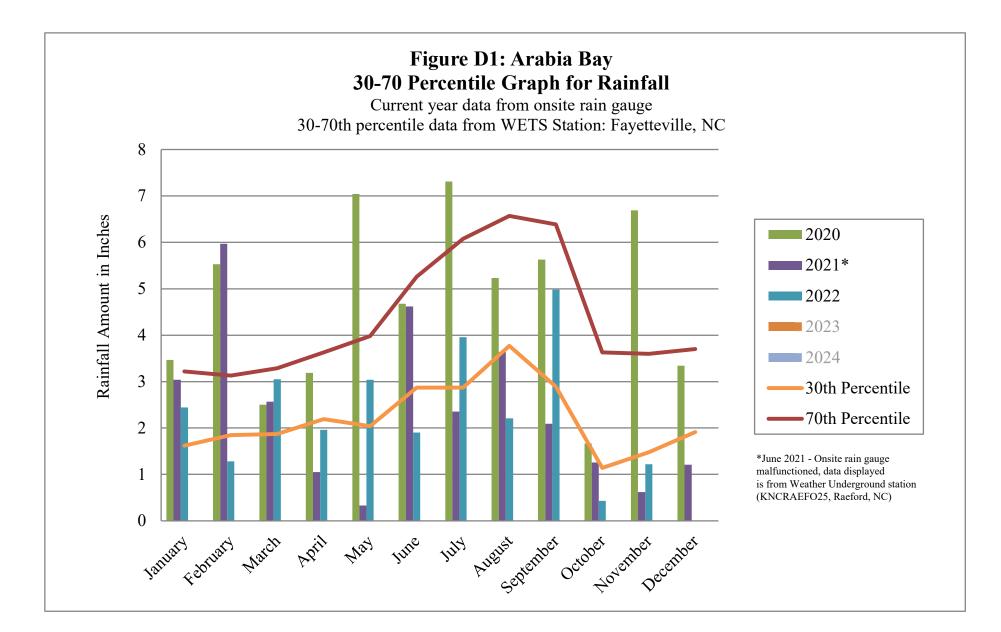


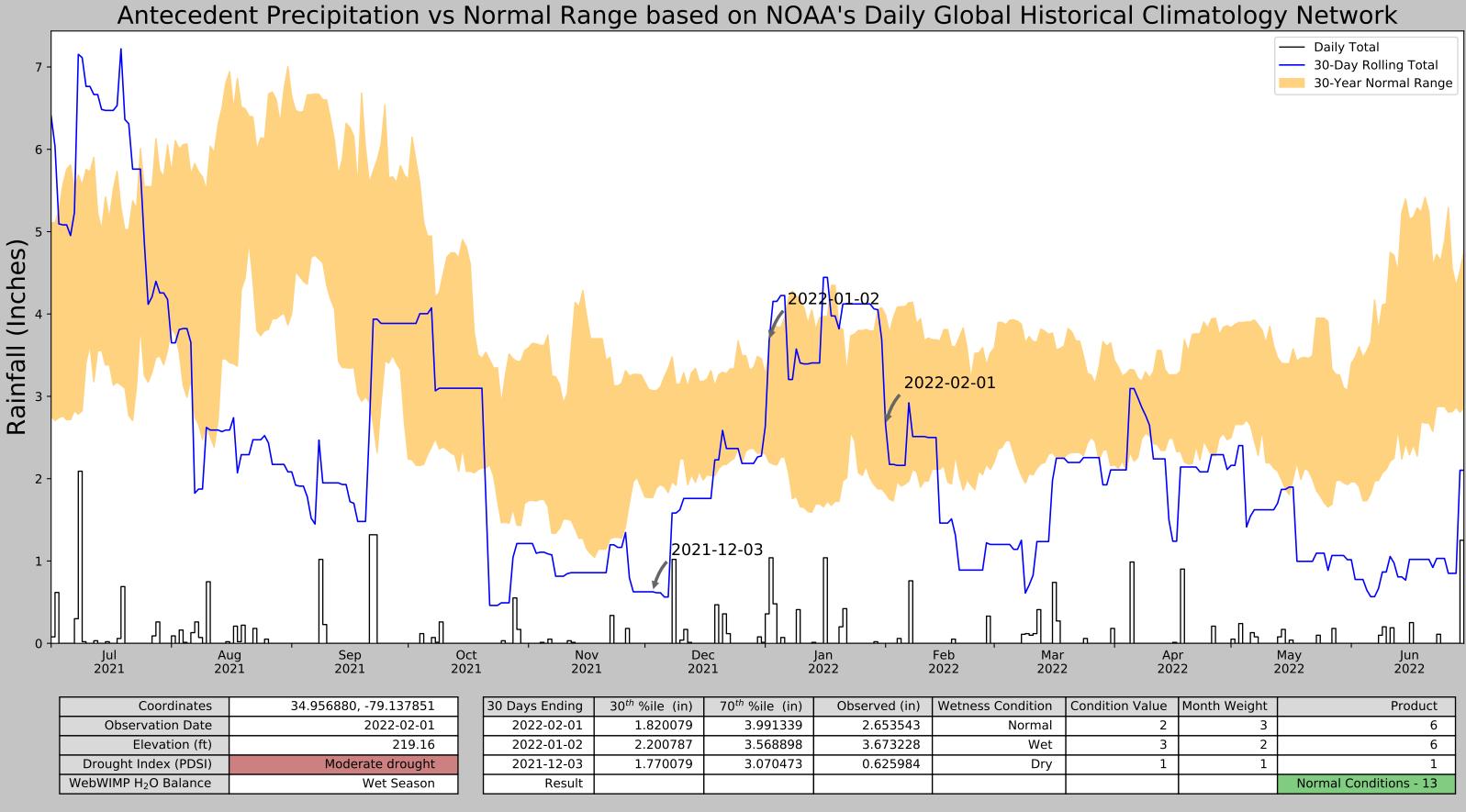












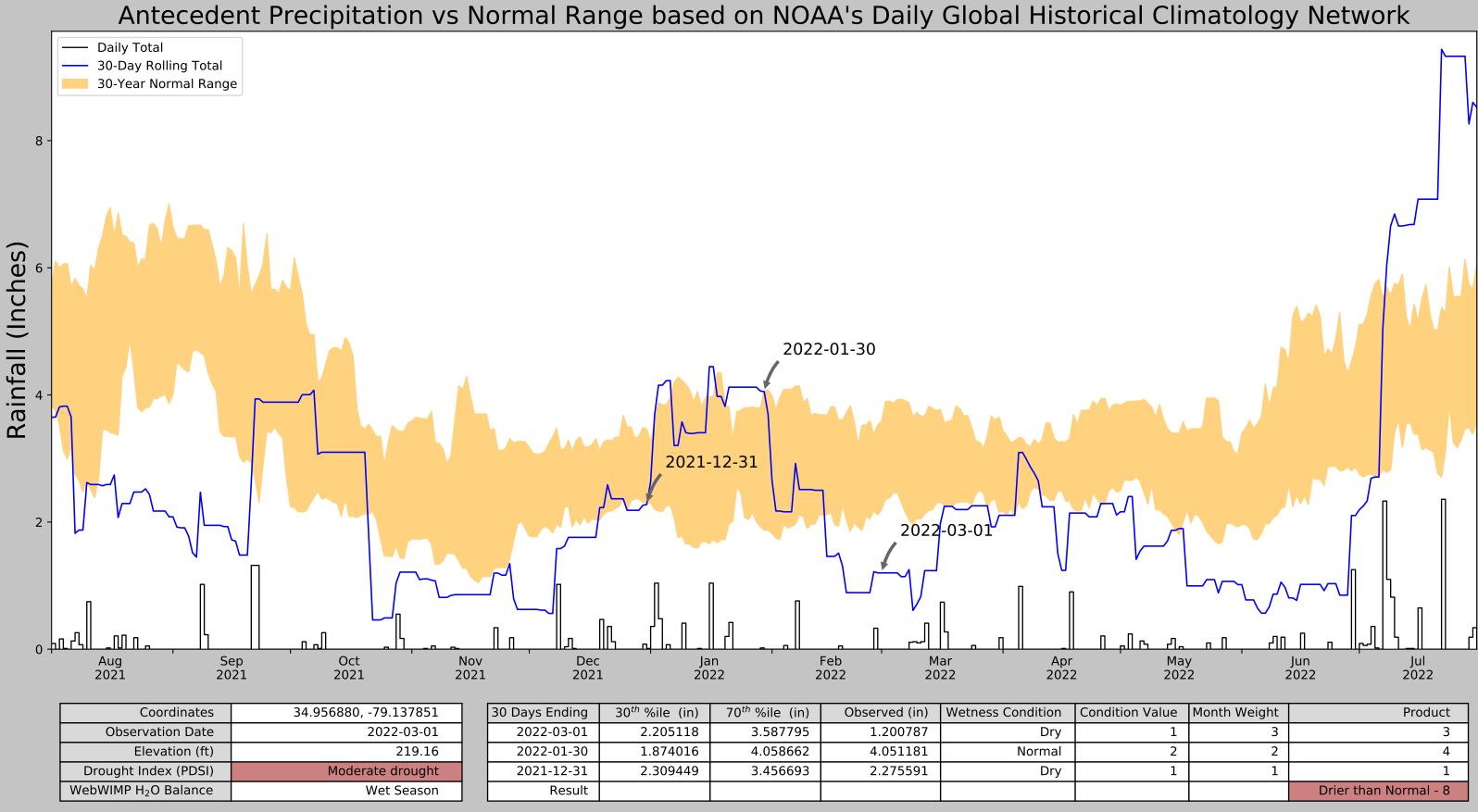


Figure and tables made by the Antecedent Precipitation Tool Version 1.0

Written by Jason Deters U.S. Army Corps of Engineers

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days (Normal)	Days (Antecedent)
FAYETTEVILLE RGNL AP	34.9914, -78.8803	186.024	14.775	33.136	7.138	8561	89
RAEFORD 9.6 E	34.9592, -79.0558	207.021	4.649	12.139	2.148	1	1
RAEFORD	34.9869, -79.2189	250.0	5.036	30.84	2.422	2116	0
RED SPRINGS 1 SE	34.8122, -79.1622	180.118	10.091	39.042	4.935	675	0

Product	Month Weight	ondition Value
6	3	2
6	2	3
1	1	1
Normal Conditions - 13		



Figure and tables made by the Antecedent Precipitation Tool Version 1.0

Written by Jason Deters U.S. Army Corps of Engineers

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days (Normal)	Days (Antecedent)
FAYETTEVILLE RGNL AP	34.9914, -78.8803	186.024	14.775	33.136	7.138	8561	89
RAEFORD 9.6 E	34.9592, -79.0558	207.021	4.649	12.139	2.149	1	1
RAEFORD	34.9869, -79.2189	250.0	5.036	30.84	2.421	2116	0
RED SPRINGS 1 SE	34.8122, -79.1622	180.118	10.091	39.042	4.935	675	0

Product	Month Weight	Condition Value
3	3	1
4	2	2
1	1	1
Drier than Normal - 8		

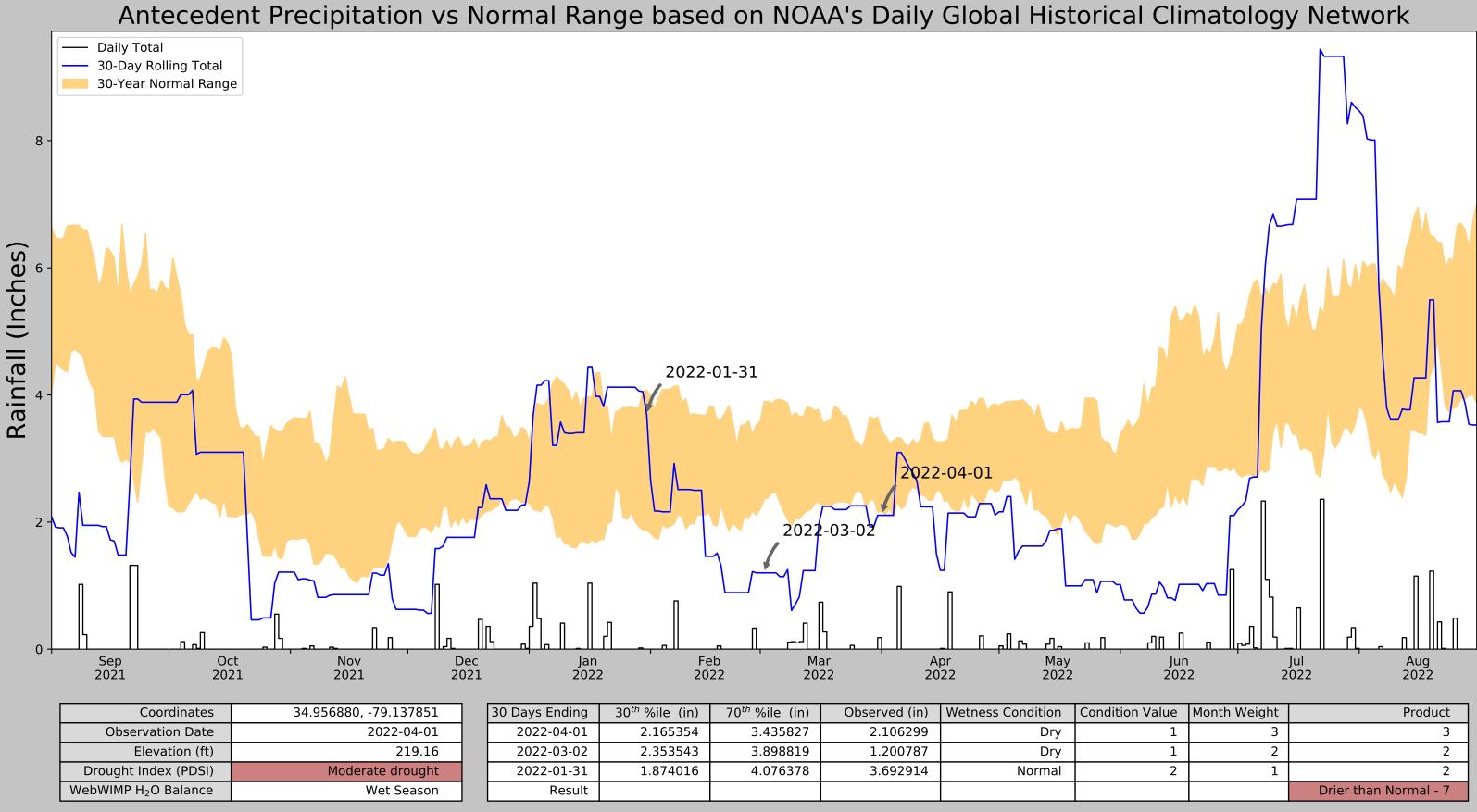
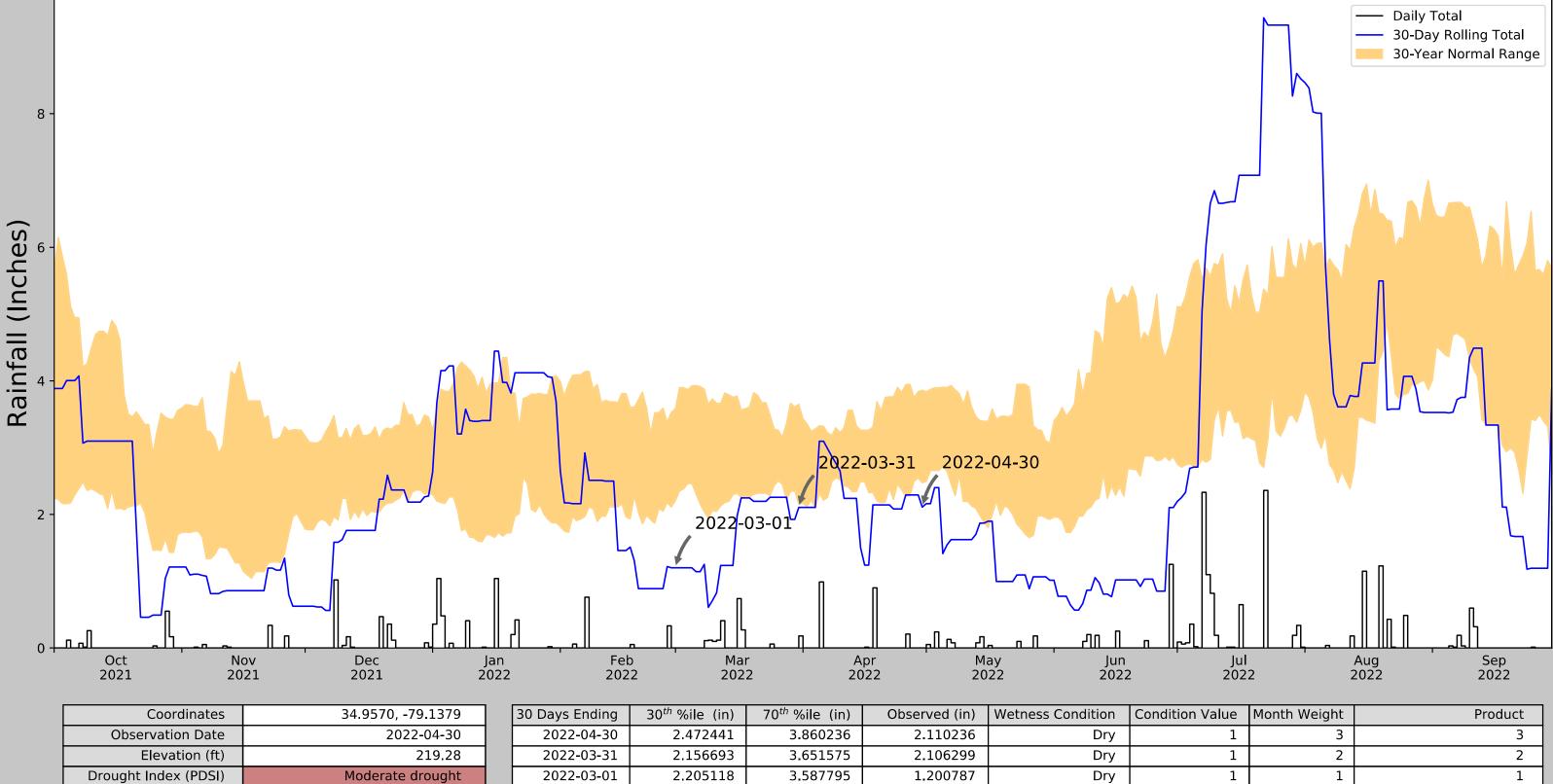
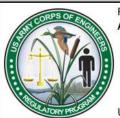


Figure and tables made by the Antecedent Precipitation Tool Version 1.0


Written by Jason Deters U.S. Army Corps of Engineers


Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days (Normal)	Days (Antecedent)
FAYETTEVILLE RGNL AP	34.9914, -78.8803	186.024	14.775	33.136	7.138	8561	89
RAEFORD 9.6 E	34.9592, -79.0558	207.021	4.649	12.139	2.148	1	1
RAEFORD	34.9869, -79.2189	250.0	5.036	30.84	2.422	2116	0
RED SPRINGS 1 SE	34.8122, -79.1622	180.118	10.091	39.042	4.935	675	0

Product	Month Weight	Condition Value
3	3	1
2	2	1
2	1	2
Drier than Normal - 7		

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network

Result

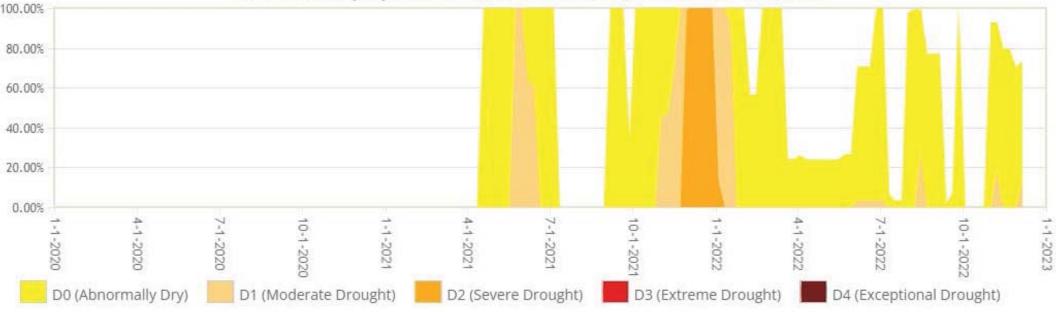
WebWIMP H₂O Balance

Figure and tables made by the Antecedent Precipitation Tool Version 1.0

Moderate drought

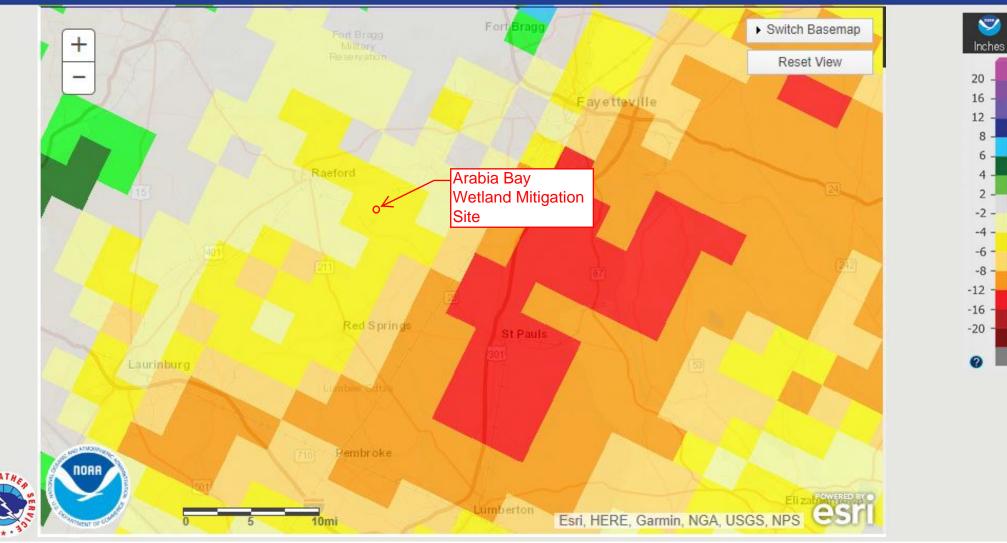
Wet Season

Written by Jason Deters U.S. Army Corps of Engineers


Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days (Normal)	Days (Antecedent)
FAYETTEVILLE RGNL AP	34.9914, -78.8803	186.024	14.777	33.256	7.141	8561	89
RAEFORD 9.6 E	34.9592, -79.0558	207.021	4.652	12.259	2.15	1	1
RAEFORD	34.9869, -79.2189	250.0	5.03	30.72	2.418	2116	0
RED SPRINGS 1 SE	34.8122, -79.1622	180.118	10.099	39.162	4.94	675	0

Dry

ondition Value	Month Weight	Product
1	3	3
1	2	2
1	1	1
		Drier than Normal - 6


Hoke County (NC) Percent Area in U.S. Drought Monitor Categories

US Drought Monitor, https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx (accessed Dec. 8, 2022)

Displaying Last 365-Day Departure from Normal Precipitation Valid on: December 08, 2022 12:00 UTC

US Dept of Commerce National Oceanic and Atmospheric Administration National Weather Service 1325 East West Highway Silver Spring, MD 20910 https://water.weather.gov/precip/index.php (accessed Dec. 9, 2022)